

1

NIST Special Database 8
Machine Print Database

R. A. Wilkinson

National Institute of Standards and Technology
Advanced Systems Division
Image Recognition Group

October 1, 1992

1.0 INTRODUCTION

This report describes the NIST Machine Print Database, NIST Special Database 8 (SD8), which
contains 360 8-bit gray scale images of pages containing machine printed characters, and a corre-
sponding binary version of each page, resulting in a total of 720 digitized pages. This database is
being distributed as a common set of images for use in the development and testing of Optical
Character Recognition (OCR) systems. This allows vendors to report results with respect to this
common image set. Each disc in this three-disc set contains approximately 593 Megabytes of stor-
age when the images are compressed. Uncompressed each disc contains 1.1 Gigabytes of data
(1.85 : 1 average compression ratio using JPEG[3] and CCITT Group 4[1]).

2.0 DATABASE IMAGES AND REFERENCE FILES

The 720 digitized pages in SD8 are broken down into four groups. The first group is the style
type. Three styles are used in this database; normal, bold and italic. Each style is organized on a
separate disc; disc1, disc2, and disc3 respectively. Within each style there are six fonts; Courier,
Helvetica, New Century School Book, Optima, Palatino, and Times Roman. Each font has 10
point sizes, 4, 5, 6, 8, 10, 11, 12, 15, 17, and 20 point. Finally, there are two examples of each
point size, a randomly ordered page and a sequentially ordered page. The random page evenly
distributes each character represented while randomizing the character occurrence. The ordered
page selects the characters in order.

SD8 contains two types of images, binary and gray scale. The gray scale images are compressed
using the lossless JPEG described in Section 2.3. The binary images are compressed using the
CCITT Group 4 compression.

Both the binary and gray scale images have ASCII reference files containing the text of what was
scanned from each page in the database. The page reference files are the ASCII files of text that
was printed to generate the original hard copy version that would later be scanned to produce the
gray scale images. These images can be used as input to a recognition system and the ASCII out-
put file compared to the reference file. If the reference file did not exist then an operator would
have to look at each character and decide what it was. These files contain a varying number of

2

rows and columns for the different point sizes. For example more 4 point font characters can be
printed on a standard 21.25 x 27.50 centimeter page, 8.5 x 11 inch, than 20 point font characters.

2.1 IMAGE FILE FORMATS

Image file formats and effective data compression and decompression are critical to the usefulness
of image archives. Each ASCII reference page was printed and later scanned at 12 dots per milli-
meter (dpm) gray scale, compressed using JPEG, and temporarily archived onto computer mag-
netic mass storage. The gray scale images were converted to binary using a smart thresholder,
thresh2, which is explained in section 2.2. The binary images produced by thresholding were
then compressed using CCITT Group 4. Once the gray scale, binary images, and reference ASCII
files were organized they were mastered and replicated onto ISO-9660 formatted CD-ROM discs
for permanent archiving and distribution.

In this application, a raster image is a digital encoding of light reflected from discrete points on a
scanned page. The 2-dimensional area of the page is divided into discrete locations according to
the resolution of a specified grid. Each cell of this grid, which is called a pixel, is represented by a
value between 0 and 255; 255 represents a white pixel, 0 represents a black pixel with the values
in between being levels of gray. For a binary image a white has a pixel value of 0 and black has a
pixel value of 1. This 2-dimensional sampling grid is then stored as a 1-dimensional vector of pix-
el values in raster order, left to right, top to bottom. Successive scan lines (top to bottom) contain
the values of a single row of pixels from the grid.

Certain attributes of a raster image are required to interpret the 1-dimensional pixel data as a 2-di-
mensional image. Examples of such attributes are the pixel width and pixel height of the image.
These attributes are stored in a machine readable header prefixed to the raster bit stream.

3

FIGURE 1. An illustration of the IHead binary raster file format.

FIGURE 2. An illustration of the IHEAD grey scale raster file format

Numerous image formats exist, but most are proprietary. Some are widely supported on small per-
sonal computers and others are supported on larger workstations. A header format named IHead
has been developed for use as a general purpose image interchange format. The IHead header is
an open image format which can be universally implemented across heterogeneous computer ar-
chitectures and environments. Both documentation and source code for the IHead format are pub-
licly available and included with this database. IHead has been designed with an extensive set of
attributes in order to adequately represent both binary and gray scale images, to represent images
captured from different scanners and cameras, and to satisfy the image requirements of diversified
applications including, but not limited to, image archival/retrieval, character recognition, and fin-

Header Length

ASCII Format Image Header

Binary Raster Stream

000000010000010000011111110 . . .

Representing the digital scan across the
page left to right, top to bottom.

‘0’ - Represents a white pixel.
‘1’ - Represents a black pixel.
8 Pixels are packed into a single byte

of memory.

Header Length

ASCII Format Image Header

8-bit Gray Scale Raster Stream

110101001101001111010010110 . . .

Representing the digital scan across the
page left to right, top to bottom.

8 bits to a pixel
256 levels of gray
1 Pixel is packed into a single byte

of memory.

4

gerprint classification. Figures 1 and 2 illustrate the IHead format for binary and gray scale imag-
es.

Since the header is represented by the ASCII character set, IHead has been successfully ported
and tested on several systems including UNIX workstations and servers, DOS personal comput-
ers, and VMS mainframes. All attribute fields in the IHead structure are of a fixed length with all
multiple character fields null-terminated, allowing the fields to be loaded into main memory in
two distinct ways. The IHead attribute fields can be parsed as individual characters and null-ter-
minated strings, an input/output format common in the ‘C’ programming language, or the header
can be read into main memory using record-oriented input/output. A fixed-length field containing
the size in bytes of the header is prefixed to the front of an IHead image file as shown in Figures 1
and 2.

FIGURE 3. IHead C language definition.

The IHead structure definition as written in the ‘C’ programming language is listed in Figure 3.
Referencing the structure members listed in this figure, the first attribute field of IHead is the iden-

/***
 File Name: IHead.h
 Package: NIST Internal Image Header
 Author: Michael D. Garris
 Date: 2/08/90
***/
/* Defines used by the ihead structure */
#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */
#define DATELEN 26 /* character length of data string */

typedef struct ihead{
 char id[BUFSIZE]; /* identification/comment field */
 char created[DATELEN]; /* date created */
 char width[SHORT_CHARS]; /* pixel width of image */
 char height[SHORT_CHARS]; /* pixel height of image */
 char depth[SHORT_CHARS]; /* bits per pixel */
 char density[SHORT_CHARS]; /* pixels per inch */
 char compress[SHORT_CHARS]; /* compression code */
 char complen[SHORT_CHARS]; /* compressed data length */
 char align[SHORT_CHARS]; /* scanline multiple: 8|16|32 */
 char unitsize[SHORT_CHARS]; /* bit size of image memory units */
 char sigbit; /* 0->sigbit first | 1->sigbit last */
 char byte_order; /* 0->highlow | 1->lowhigh*/
 char pix_offset[SHORT_CHARS]; /* pixel column offset */
 char whitepix[SHORT_CHARS]; /* intensity of white pixel */
 char issigned; /* 0->unsigned data | 1->signed data */
 char rm_cm; /* 0->row maj | 1->column maj */
 char tb_bt; /* 0->top2bottom | 1->bottom2top */
 char lr_rl; /* 0->left2right | 1->right2left */
 char parent[BUFSIZE]; /* parent image file */
 char par_x[SHORT_CHARS]; /* from x pixel in parent */
 char par_y[SHORT_CHARS]; /* from y pixel in parent */
}IHEAD;

5

tification field, id. This field uniquely identifies the image file, typically by a file name. The at-
tribute field, created, is the date on which the image was captured or digitized. The next three
fields hold the image’s pixel width, height, and depth. A binary image has a pixel depth of 1
whereas a gray scale image containing 256 possible shades of gray has a pixel depth of 8. The at-
tribute field, density, contains the scan resolution of the image; in the case of this database, 12
dots per millimeter which is equivalent to 300 dots per inch. The next two fields deal with com-
pression.

In the IHead format, images may be compressed with virtually any algorithm. The IHead header
is always uncompressed, even if the image data is compressed. This enables header interpretation
and manipulation without the overhead of decompression. The compress field is an integer flag
which signifies which compression technique, if any, has been applied to the raster image data
that follows the header. If the compression code is zero, then the image data is not compressed,
and the data dimensions: width, height, and depth, are sufficient to load the image into main mem-
ory. However, if the compression code is nonzero, then the complen field must be used in addition
to the image’s pixel dimensions. In order to load the compressed image data into main memory,
the value in complen is used to load the compressed block of data into main memory. Once the
compressed image data has been loaded into memory, the appropriate decompression technique
can be used to produce an image which has the pixel dimensions consistent with those stored in its
header. The gray scale images in SD8 have been compressed using the JPEG compression de-
scribed in section 2.3. The binary images have been compressed using CCITT Group 4 compres-
sion.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are padded.
Pixel values of binary images are stored 8 pixels (or bits) to a byte. Most images, however, are not
an even multiple of 8 pixels in width. In order to minimize the overhead of ending a previous scan
line and beginning the next scan line within the same byte, a number of padded pixels are provid-
ed in order to extend the previous scan line to an even byte boundary. Some digitizers extend this
padding of pixels out to an even multiple of 8 pixels, other digitizers extend this padding of pixels
out to an even multiple of 16 pixels. This field stores the image’s pixel alignment value used in
padding out the ends of raster scan lines.

The next three attribute fields identify binary interchanging issues among heterogeneous comput-
er architectures and displays. The unitsize field specifies how many contiguous pixel values are
bundled into a single unit by the digitizer. The sigbit field specifies the order in which bits of sig-
nificance are stored within each unit; most significant bit first or least significant bit first. The last
of these three fields is the byte_order field. If unitsize is a multiple of bytes, then this field speci-
fies the order in which bytes occur within the unit. Given these three attributes, binary incompati-
bilities across computer hardware and binary format assumptions within application software can
be identified and effectively dealt with.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data to
where a particular image’s significant image information begins. The whitepix attribute defines
the value assigned to the color white. For example, the binary images in this database are black
text on a white background and the value of the white pixels is 0. This field is particularly useful
to image display routines. The issigned field is required to specify whether the units of an image
are signed or unsigned. This attribute determines whether an image with a pixel depth of 8 should
have pixel values interpreted in the range of -128 to +127, or 0 to 255. The orientation of the ras-

6

ter scan may also vary among different digitizers. The attribute field, rm_cm, specifies whether
the digitizer captured the image in row-major order or column-major order. Whether the scan
lines of an image were accumulated from top to bottom, or bottom to top, is specified by the field,
tb_bt, and whether left to right, or right to left, is specified by the field, rl_lr.

The final attributes in IHead provide a single historical link from the current image to its parent
image; the one from which the current image was derived or extracted. The parent field typically
contains the full path name to the image from which the current image was extracted. The par_x
and par_y fields contain the origin point (upper left hand corner pixel coordinate) from where the
extraction took place from the parent image. These fields provide a historical thread through suc-
cessive generations of images and subimages. If the image has no parent, these three fields con-
tain a null string. The IHead image format contains the minimal amount of ancillary information
required to successfully manage binary and gray scale images.

2.2 BINARIZATION

The gray scale images in SD8 were converted to binary using thresh2. The program, thresh2,
takes three parameters, an outer window, an inner window, and a thresholds level. For the point
sizes 4, 5, 6, 8, and 10 an outer window of 6 and inner window of 5 are used. For the other 5 point
sizes 11, 12, 15, 17, and 20 an outer window of 8 and inner window of 5 are used. On the normal
style, disc1, and italics, disc3, discs, a thresholds level of 0.25 was used while on the bold style
disc, disc2, 0.40 was used.

The outer window determines the size of the region that the weighted sum will be applied to. The
inner window is used to determine the weight that will be applied to the value at a position in the
outer window. The weights are generated using the Gaussian equation (1) where i is the row posi-
tion, j is the column position, and p is the size of the inner window.

The weighted sum is divided by the sum of the weights to obtain a weighted average. This weight-
ed average is then compared to the threshold level. The threshold level is a value between 0 and
255. The value for the threshold level is calculated by 256 times percentage threshold. If the
weighted average is less than the threshold level then the value is set to 0, otherwise it is set to 1.

2.3 MODIFIED JPEG LOSSLESS COMPRESSION

The compression used was developed from techniques outlined in the WG10 “JPEG” (draft) stan-
dard for 8-bit gray scale images with modifications to the compressed data format. The NIST
IHead format already contained most of the information needed in the decompression algorithm,
so the JPEG compressed data format was modified to contain only the information needed when
reconstructing the Huffman code tables and identifying the type of predictor used in the coding
process. The IHead image format is described in section 2.1. Codes used to compress and decom-
press the images are still developed per the draft standard, but only with respect to 8-bit gray scale
images.

wi j, e

i2 j2+()−

p2

= (1)

7

The standard uses a differential coding scheme and allows for seven possible ways of predicting a
pixel value. Tests showed that predictor number 4 provided the best compression on up to 99.9%
of fingerprint images; therefore, this same predictor was used to compress all of the character im-
ages.

3.0 DATABASE CONTENT AND ORGANIZATION

In additon to the image and reference files both the binary and grey scale images have ASCII ref-
erence files which are the ASCII format of what was scanned. SD8 contains statistical logs,
source code for file and image manipulation, and UNIX-style manual pages for software docu-
mentation.

3.1 Database Statistics

This database is a three disc set. Each volume contains font style: normal, bold, or italic. In each
style there are six font types; Courier, Helvetica, New Century Schoolbook, Optima, Palatino, and
Times Roman. For each font there are 10 point sizes: 4, 5, 6, 8, 10, 11, 12, 15, 17, and 20. Two
pages of each point size were generated, one random order and one sequential order. The random
page has the character sampling randomly ordered and equally distributed while the sequential
page uses the sequential order of the character samples.

There are 94 different characters represented on each page. These characters include 26 upper
case alphas, 26 lower case alphas, 10 numerics, and 22 special characters. The total number of ex-
amples is 3,063,168 characters at an average of 8509 characters per page. Specific information for
each page is in the file stats.log in the doc directory.

3.2 Database Hierarchy

Figure 4 illustrates the top level directory tree in the database. This directory structure is the same
for each disc. The doc, man and src directories are the same on each disc. The directory doc con-
tains the statistical logs described in Section 3.1. The directories man and src, contain documen-
tation and utilities necessary to manipulate the files and image data on the CDs discussed in
Section 4. The data directory contains the image files and the ASCII page reference files de-
scribed in Section 2. The organization of the data directory is illustrated in Figure 5.

3.3 File Naming Conventions

File names have been derived so that the names accurately describe the data being represented.
All file names are of the format xxx_y_z.ddd.The first three characters (xxx) represent the font
type and style. The values that can be used are cou for Courier, hel for Helvetica, new for New
Century School Book, opt for Optima, pal for palatino, and tim for Times-Roman. The style is
specified by the third position of this field, if it is unchanged the style is normal, for bold this po-
sition is a b and for italics it is an i. The y field designates whether the reference file was generated
randomly or not. An r in this field means it was randomly generated where an n means it was not.
The z field holds the point size and contain the values 4, 5, 6, 8, 10, 11, 12, 15, 17, or 20. The ddd
extension describes what type of file this actually is, it can have one of three values, grey for gray
scale images, bin for binary images, and txt for ASCII reference files. The file name cob_r_15.-
gry means the file is Courier, bold, 15 point font, randomly generated, and gray scale.

8

FIGURE 4. The top level directory tree of a disc in the database.

FIGURE 5. The data directory hierarchy. This example is from the normal disc, disc1.

4.0 SOURCE CODE FOR DATABASE ACCESS

SD8 contains software written in the ‘C’ programming language on a UNIX serial workstation.
Source code for 7 different programs: decomp, dumpihdr, ihdr2sun, sunalign, dcplljpg,
thresh1, and thresh2 are included within the top level database directory src. These programs,
their primary supporting subroutines, and associated file names are described below. These rou-
tines are provided as an example to software developers of how IHead images may be manipulat-
ed. Manual pages are included in Appendix C and are located in the top level database directory
man.

4.1 Compilation

CD-ROM is a read-only storage medium; this requires the files located in the directory src to be
copied to a read-writable disk partition prior to compilation. Once these files have been copied,
executable binaries can be produced by invoking the UNIX utility make. A command-line exam-
ple follows.

make -f makefile.mak

NIST Special Database 8

doc man data

Documentation
Files

Software
Manual
Pages

Page Images
binary and
grey scale

src

Image
Software
Utilities

data

cou_n_4.gry cou_n_4.bin cou_n_4.txt
cou_n_5.gry cou_n_5.bin cou_n_5.txt

tim_r_20.gry tim_r_20.bin tim_r_20.txt

...
......

9

4.2 decomp <IHead file in> <IHead file out>

The program decomp decompresses an image in IHead format. The output file specified will be
an image in IHead format with its image data uncompressed. The main routine for decomp is
found in decomp.c and calls the external functions readihdrfile() and writeihdrfile().

The procedure readihdrfile() is responsible for loading an IHead image from a file into main
memory and is found in the file loadihdr.c. This routine reads the image’s header data returning
an initialized IHead structure by calling readihdr(). In addition, the image’s raster data is returned
to the caller uncompressed. The images in this database have been 2-dimensionally compressed
using CCITT Group 4, therefore readihdrfile() invokes the external procedure grp4decomp()
which decompresses the raster data. Upon completion, readihdrfile() returns an initialized IHead
structure, the uncompressed raster data, and the image’s width and height in pixels. Grp4de-
comp() was developed by the CALS Test Network[2] and adapted by NIST for use with this data-
base and is found in the file g4decomp.c.

The function readihdr() is responsible for loading an image’s IHead data from a file into main
memory. This routine allocates, reads, and returns the header information from an open image file
in an initialized IHead structure. This function is found in the file ihead.c. The IHead structure
definition is listed in Figure 2 and is found in the file ihead.h.

4.3 dumpihdr <IHead file>

The program dumpihdr reads an image’s IHead data from the given file and formats the header
data into a report which is printed to standard output. The main routine for dumpihdr is found in
the file dumpihdr.c and calls the external function readihdr().

4.4 ihdr2sun <IHead file>

Ihdr2sun converts an image from NIST IHead format to Sun rasterfile format. Ihdr2sun loads an
IHead formatted image from a file into main memory and writes the raster data to a new file
appending the data to a Sun rasterfile header. The main routine for this program is found in the file
ihdr2sun.c and calls the external function ReadIheadRaster() which is found in the file raste-
rio.c.

ReadIheadRaster() is the procedure responsible for loading an IHead image from a file into main
memory. This routine reads the image’s header data returning an initialized IHead structure by call-
ing readihdr(). In addition, the image’s raster data is returned to the caller uncompressed. The
images in this database have been 2-dimensionally compressed using a modified JPEG lossless
compression algorithm, therefore ReadIheadRaster() invokes the external procedure jpglldcp()
which is responsible for decompressing the raster data. Upon completion, ReadIheadRaster()
returns an initialized IHead structure, the uncompressed raster data, the image’s width and height
in pixels, and pixel depth.

Jpglldcp() accepts image raster data compressed using the modified JPEG lossless compression
algorithm and returns the uncompressed image raster data. Jpglldcp() was developed using tech-
niques described in the WG10 “JPEG” (draft) standard [3] and adapted for use with this database.
Source code for the algorithm is found in jpglldcp.c.

10

4.5 dcplljpg <lossless JPEG compressed IHEAD file>

Dcplljpg is a program which decompresses a gray scale image file (approximately 90 seconds per
image on a scientific workstation) that was compressed using the modified JPEG compression rou-
tine. The routine accepts a compressed image in NIST IHead format and writes the uncompressed
image to the same filename using the NIST IHead format. The main routine is found in dcplljpg.c
and calls the external functions ReadIheadRaster() (see section 4.4 for ReadIheadRaster descrip-
tion) and writeihdrfile().

Writeihdrfile() is a routine that writes an IHead image into a file. This routine opens the passed
filename and writes the given IHead structure and corresponding data to the file. Writeihdrfile()
is found in the src file rasterio.c.

4.6 sunalign <Sun rasterfile>

The program sunalign is a program which ensures the Sun rasterfile input has scanlines of length
equal to a even multiple of 16 bits. It has been found that some Sun rasterfile applications assume
scanlines which end on an even word boundary. IHead images may contain scanlines which do
not conform to this assumption. Therefore, it may be necessary to run sunalign on an image
which has been converted using ihdr2sun. The main routine for this program is found in the file
sunalign.c.

4.7 thresh1 <8-bit gray image> <1-bit resulting image> <percentage threshold>

The program thresh1 is a simplistic gray scale to binary thresholder that sets all values below a
threshold to 0 and all others to 1. The threshold level is determined by 256 times the percentage
threshold parameter. If the percentage threshold parameter is 0.50 then the threshold level
would be 128.

4.8 thresh2 <8-bit gray image> <1-bit resulting image> <outer window> <inner window>
<percentage threshold>

Thresh2 is a gray scale to binary thresholder that uses a weighted average over a region to
determine the value for a pixel to be compared against the thresholding level.

References
[1] CCITT, “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus, Facsimile

VII.3 - Rec. T.6,” 1984.
[2] Department of Defense, “Military Specification - Raster Graphics Representation in Binary Format, Requirements

for, MIL-R-28002,” 20 Dec 1988.

[3] WG10 “JPEG”, committee draft ISO/IEC CD 10198-1, “Digital Compression and Coding of Continuous-Tone

Still Images,” March 3, 1991.

11

 Appendix A: Non-random Page Image Example

12

Appendix B: Random Page Image Example

13

Appendix C: Manual Pages for Supplied Software

