Conformance to Standardized Minutia Detection Requirements

Christoph Busch and Sebastian Abt
Hochschule Darmstadt
Center for Advanced Security Research Darmstadt

IBPC 2012
NIST - March 6-8, 2012
Conformance to Standardized Minutia Detection Requirements

MOTIVATION
Motivation

Minutiae Templates

1. Fingerprint image (biometric sample) after acquisition as generated by capture device.

2. Features (minutiae) as identified during feature extraction process.

3. Biometric template encoding. According to ISO/IEC 19794-2:
 - Minutia x-coordinate
 - Minutia y-coordinate
 - Minutia angle θ
 - Minutia type t
 - Minutia quality q

 $$m = \langle x, y, \theta, t, q \rangle \in \mathcal{M}$$
Motivation

Minutiae Detection Deficiency

Vendor A
Vendor B
Vendor C
Motivation

Minutiae Misplacement

- MINEX results presented at BIOSIG 2009
 - 2D histogram of minutiae locations
 - Angle and type information ignored

(Source: Tabassi et al., BIOSIG2009)
• ISO/IEC 29109-x: Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794-x:
 – Level 1: Data format conformance
 – Level 2: Internal consistency checking
 – Level 3: Content checking
Motivation

ISO/IEC 29109 - Part2: Finger minutiae data
ISO/IEC 29109-2 AMD1: Semantic conformance testing - Part2: Finger minutiae data
- Scope: tests of semantic assertions
 Type A Level 3 as defined in ISO/IEC 29109-1:2009
ISO/IEC 29109-2 AMD1:

- „The reason these tests are necessary is because in practice minutia detectors sometimes
 - fail to **properly** place a minutia
 - detect a **false minutia** within the ridge structure of a parent fingerprint;
 - detect a false minutia outside or at the periphery of an image of the parent fingerprint
 - fail to **detect a minutia within** the fingerprint data
 - fail to determine **type** correctly
 - fail to measure **angle** correctly „
Motivation

Conformance Testing

- ISO/IEC 29109-2 AMD1 (SC37N4834):
 - Clause 7.4 Minutiae conformance measure
 \[
 \text{MINUTIA_CONFORMITY}(r, t) = (1 - p)H(W/4 - d)
 \]
 - Clause 7.5 Out-of-area test
 \[
 \text{OUTSIDE}(T) = \frac{1}{N} \sum_{i=1}^{N} \text{MPS}(t_i)
 \]
 - Clause 7.6 False minutia test
 \[
 \text{TRUE_MINUTIA_FRACTION}(R, T) = 1 - \frac{\text{NIT}}{N_T}
 \]
Conformance to Standardized Minutia Detection Requirements

REVISED PERSPECTIVE ON
SEMANTIC CONFORMANCE TESTING

March 8, 2012
Level 3: Content checking
- „to test that the BDIRs produced by an IUT are faithful representations of the original biometric data and that they satisfy those requirements of the base standard that are not simply a matter of syntax and format [...]“ (ISO/IEC 29109-1)

Strict (loose) definition of ‘faithfulness’
- „A biometric template resulting from a noise-free and linear transformation applied to the input biometric characteristic’s (sample’s) traits.“
- Faithfulness in strict sense desired
- Faithfulness in loose sense measured, due to non-linear physical effects during data acquisition
Faithfulness
- Modeled as continuous function
- With reference set R_i and test set
- Measured at minutiae-level
 - Per attribute equality
 - No addition of spurious minutiae

Computation Model
- For a set of feature extractors
- Compute conformance rates
- Based on a reference data set
- And on definition of faithfulness

\[F : \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}, F(R_i, T_{k,i}) \]
\[m \in R_i, m' \in T_{k,i} \]
\[\forall \psi \in \{x, y, \theta, t\} : \psi =_R \psi' \]
\[|R_i| = |T_{k,i}| \]

\[SCM = (A, GTM, F, CR_{max}) \]
\[\forall A_k \in A : \]
\[CR(A_k) = \frac{1}{N_{GTM}} \sum_{i=1}^{N_{GTM}} (\omega_i \cdot F(R_i, T_{k,i})) \]
Semantic Conformance Testing

Reference Data Set

- Ground-Truth Minutiae
 - Consists of triplets
 - Biometric sample
 - Reference template
 - Weight
- Based on biometric samples of NIST special databases SD14 and SD29
- Samples manually analyzed by dactyloscopic experts of BKA

\[GTM, N_{GTM} = |GTM| \]
\[(P_i, R_i, \omega_i) \]
\[P_i \]
\[R_i \]
\[\omega_i \]

\(\Rightarrow \) Results in a scattered set of ground truth minutiae per biometric sample

\(\Rightarrow \) Sample fusion?
Semantic Conformance Testing

Testing Methodologies

- Explicit Fusion Methodology
 - Requires explicit data fusion process
 - Computes harmonized samples from scattered expert data - see
 a) presentation at IBPC 2010:
 b) presentation by Sebastian Abt at BIOSIG 2010:

- Implicit Fusion Methodology
 - Implicit fusion during conformance rate computation
 where references R_{kd} are generated by $d=1,\ldots,D$ dactyloscopic experts
 - Requires adjusted weights
 - Uses scattered samples as-is

- Known-Truth Methodology
 - Utilizes synthetically generated data
• Minutiae quality scores
 – Valued $0 \leq q \leq 100$ according to ISO/IEC 19794-2
 – Can be interpreted as confidence value
 – Usage of minutiae quality is controversially discussed in SC37 as no standardized method for determination exists
 – However, standardization of minutiae quality not required

• Quality-score honoring instance
 \[\text{SCM}_{QBL} = (A, GTM, F_{QBL}, 1) \]
 \[F_{QBL}(R_i, T_{k,i}) = \lambda_1 \gamma_1(R_i, T_{k,i}) + \lambda_2 \gamma_2(R_i, T_{k,i}) \]

• Function to measure faithfulness
 – Addresses minutiae misplacement and spurious minutiae placement problems
 – Honores minutiae quality values
Semantic Conformance Testing

Minutiae Misplacement Problem

- Quantifies degree to which automatically generated minutiae deviate from ground-truth minutiae
- Equally penalizes location, angle and type differences
- Penalty weighted according to minutiae reliability

\[\gamma_1(R_i, T_{k,i}) = \frac{1}{|R_i|} \sum_{j=1}^{|R_i|} (1 - (1 - faith(m_j, m'_j))e^{-(1 - \frac{q_j}{100})^2}) \]

\[faith(m_j, m'_j) = \begin{cases}
 0, & \text{if } d_2(m_j, m'_j) > tol_d \\
 f_j, & \text{otherwise}
\end{cases} \]

\[f_j = \frac{s_j^{\Delta d} + s_j^{\Delta \theta} + s_j^{\Delta t}}{3} \]

\[s_j^{\Delta d} = \frac{tol_d - d_2(m_j, m'_j)}{tol_d} \]

\[s_j^{\Delta \theta} = \frac{\pi - \min\{2\pi - |\theta_j - \theta'_j|, |\theta_j - \theta'_j|\}}{\pi} \]

\[s_j^{\Delta t} = \begin{cases}
 1, & \text{if } t_j = t'_j \\
 0, & \text{if } t_j \neq t'_j \text{ and } t_j \text{ is unknown} \\
 25, & \text{otherwise}
\end{cases} \]
Semantic Conformance Testing

Spurious Minutiae Problem

- Compute ratio of spurious minutiae
 - no distinction between „out of fingerprint area“ and „inside“
- Weighted according to minutiae reliabilities

\[\gamma_2(R_i, T_{k,i}) = 1 - \frac{1}{|T_{k,i}|} \sum_{j=1}^{S_{k,i}} \frac{q'_j}{100} \]

\[S_{k,i} = \{ m' \in T_{k,i} | \exists m \in R_i : d_2(m, m') \leq tol_d \} \]
• Development of feature extractors and comparators using 3 SDKs

• Computation of 162 DET curves
• Analysis of 3294 biometric samples
• Creation of 12661 biometric templates
• Computation of 34,6M comparison scores
Evaluation and Results

Real World Correlation

- Comparison of CRs and avg. non-native equal error rates (nnEER)
- nnEER estimate of real-world inter-vendor performance:
 - Average of equal error rates in non-native case,
 - i.e. using probe templates from V_x and reference templates from V_y

\[
nnEER_\phi = \frac{1}{2(|V|-1)} \sum_{\psi \in V \setminus \{\phi\}} (EER_{\phi,\psi} + EER_{\psi,\phi})
\]

\[V = \{A_V^A, A_V^B, A_V^C\}\]

<table>
<thead>
<tr>
<th>avg. EER</th>
<th>A_V^A</th>
<th>A_V^B</th>
<th>A_V^C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_V^A</td>
<td>0.0415</td>
<td>0.0459</td>
<td>0.0493</td>
</tr>
<tr>
<td>A_V^B</td>
<td>0.0455</td>
<td>0.0428</td>
<td>0.0519</td>
</tr>
<tr>
<td>A_V^C</td>
<td>0.0495</td>
<td>0.0516</td>
<td>0.0376</td>
</tr>
</tbody>
</table>

\[\text{(a)}\]

<table>
<thead>
<tr>
<th>IUT</th>
<th>mmEER</th>
<th>$CR_{QBL}(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_V^A</td>
<td>0.0476</td>
<td>0.6214</td>
</tr>
<tr>
<td>A_V^B</td>
<td>0.0488</td>
<td>0.5133</td>
</tr>
<tr>
<td>A_V^C</td>
<td>0.0506</td>
<td>0.4039</td>
</tr>
</tbody>
</table>

\[\text{(b)}\]
Evaluation and Results

Real World Correlation

- Comparison of CRs and avg. non-native equal error rates (nnEER)
- nnEER estimate of real-world inter-vendor performance:
 - Average of equal error rates in non-native case,
 - i.e. using probe templates from V_x and reference templates from V_y

$$\text{nnEER}_{\phi} = \frac{1}{2(|V|-1)} \sum_{\psi \in V \setminus \{\phi\}} (\text{EER}_{\phi,\psi} + \text{EER}_{\psi,\phi})$$

$$V = \{A_{V_A}, A_{V_B}, A_{V_C}\}$$

- Benchmarked using non quality honoring approach (SCM$_{BL}$) described in

<table>
<thead>
<tr>
<th>avg. EER</th>
<th>A_{V_A}</th>
<th>A_{V_B}</th>
<th>A_{V_C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{V_A}</td>
<td>0.0415</td>
<td>0.0459</td>
<td>0.0493</td>
</tr>
<tr>
<td>A_{V_B}</td>
<td>0.0455</td>
<td>0.0428</td>
<td>0.0519</td>
</tr>
<tr>
<td>A_{V_C}</td>
<td>0.0495</td>
<td>0.0516</td>
<td>0.0376</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>IUT</th>
<th>nnEER</th>
<th>$CR_{QBL}(\cdot)$</th>
<th>$CR_{BL}(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{V_A}</td>
<td>0.0476</td>
<td>0.6214</td>
<td>0.6285</td>
</tr>
<tr>
<td>A_{V_B}</td>
<td>0.0488</td>
<td>0.5133</td>
<td>0.6295</td>
</tr>
<tr>
<td>A_{V_C}</td>
<td>0.0506</td>
<td>0.4039</td>
<td>0.6192</td>
</tr>
</tbody>
</table>

(b)
Evaluation and Results

Testing Methodologies

- Evaluation of implicit vs. explicit fusion methodologies
- Evaluation shows that both methodologies lead to comparable results
 ➤ Explicit clustering not necessary!

<table>
<thead>
<tr>
<th></th>
<th>Implicit fusion</th>
<th>Explicit fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\gamma_1(R_i, T_{k,i})$</td>
<td>$\gamma_2(R_i, T_{k,i})$</td>
</tr>
<tr>
<td>A_{VA}</td>
<td>0.483</td>
<td>0.795</td>
</tr>
<tr>
<td>A_{VB}</td>
<td>0.414</td>
<td>0.614</td>
</tr>
<tr>
<td>A_{VC}</td>
<td>0.345</td>
<td>0.444</td>
</tr>
</tbody>
</table>
Assessing Semantic Conformance of Minutiae-based Feature Extractors

CONCLUSION AND FUTURE WORK
Conclusion and Future Work

- Semantic conformance computation based on formal definition of faithfulness
- Plausibility testing yields reasonable results
- Conformance rates of quality honoring approach correlate with real-world inter-vendor performance estimates
- Explicit clustering not necessary

Contribution
- Integration of ideas into ISO/IEC 29109-2 AMD1
A copy is available at: http://www.christoph-busch.de/standards-gtd.html
Conclusion and Future Work

- ISO/IEC 29109-2 AMD1 requires further contributions
- What is a common definition of a markup?
 a) an automated SDK generated minutia?
 b) a minutia generated by an individual
 (i.e. a dactyloscopic expert)
 c) any minutiae either a) or b)
- Need for Semantic Conformance Computation Challenge (SC3)
 - Stronger evaluation (more templates and algorithms)
 - in cooperation with NIST
Thanks to...

Elham Tabasssi
Martin Olsen
Patrick Grother
Raffaelle Cappelli
Timo Ruhland
Wolfgang Krodel
Thank you!

Questions?
Discussion!
Contact

Prof. Dr. Christoph Busch
Principal Investigator | Research Area: Secure Things

CASED
Mornewegstr. 32
64293 Darmstadt/Germany
christoph.busch@cased.de

Telefon +49 6151/16 9444
Fax www.cased.de