Beyond Image Quality
Failure Analysis from Similarity Surface Techniques

Terrance Boult
El Pomar Professor of Communication and Computation
University of Colorado at Colorado Springs
And founder,
Securics Inc.

With past work by at Lehigh by R. Micheals, Weiliang Li, Yin Chen,
Xiang Gao T. Riopka,
At UCCS with Jay Potharaju

Recommendations

- Need to develop consistent measure of quality of “utility quality measures” that allow comparison.
 - We recommend FP ROC.

- Community should separate issues different “Qualities” and needs to work on at least 4 different “utility” qualities:
 - Capture, Enrollment, Match/Failure, Share

- Compared to finger matching, Data/features used by face algorithms has significantly greater variations, so cannot expect same “prediction” ability from image quality.

- Blind SNR estimates workable for image-quality. Can be improve by weighting “feature regions” and learning features for Eyes/Glasses/ Pose.

- Can develop a general PRAT/FASST Toolkit for algorithm “match quality” from biometric algorithm specific data.
How do sensor/world variations impact Face Recognition?

Need controlled/designed experiments!

Photo-head Data Acquisition

- **Sensor**: FOV 0.5° and 0.25° imaging (equivalent to 1600mm and 3200mm focal lengths).

Experiment Setup:

- ~100ft
- ~200ft
Example Photoheads

S1 Gallery

S2 Gallery

March 2 12:32 PM, Sensor C0, (Original Images S1) (C0,S1) Probe Set

March 2 12:32 PM, Sensor C0, (Original Images S2) (C0,S2) Probe Set

March 2 12:32 PM, Sensor C1, (Original Images S1) (C1,S1) Probe Set

March 2 12:32 PM, Sensor C1, (Original Images S2) (C1,S2) Probe Set

Example “photohead” data

100ft
9:30am – 8:pm (4 samples per hour)

200ft

DARPA HID Conference, September 2002
Experiments

- **Four datasets**: JPEG, Outdoor, Blur, & Gamma
 - **JPEG**: Varying image quality from 100 to 0
 ![JPEG Images]
 - **Outdoor**: Images collected from outdoor anti-reflective marine LCD display
 ![Outdoor Images]

DARPA HID — HBASE collection: Camera distance = 100 / 200ft

Experiments

- **Blur**: Blurred images by Gaussian kernel 7x7
 ![Blur Images]

- **Gamma**: Images processed by Gamma transform
 ![Gamma Images]
Facial Image Quality from blind SNR estimate

Statistical properties of edge image change with quality. Suppose pdf of edge intensity image, $||\nabla I||$ is $f_{||\nabla I||}(\cdot)$ has mean μ.

Choosing a window around eyes, define Face SNR image quality as

$$Q' = \frac{\sum \text{edge above } 2\mu \text{'s pixels}}{\sum \text{edge pixels}} \approx \int_{2\mu}^{\infty} f_{||\nabla I||}(r)dr$$

Can also apply spatial weighting to key on eyes/nose.

Adapted from [Zhang-Blum-00].

Image Quality vs Recognition Rate (Blind SNR-based Face IQ)

Correlations are .922 and .930!

Also tried multiple measures of blur and contrast and multi-metric fusion. None were better than Blind SNR estimate.

Tested with FaceIt, PCA, EBGM. Generally report FaceIT.
Why Predict Failure

- System approach – if data is not sufficient can acquire more while subject still available.
- Feedback to improve collection/sensor system.
- Decision Fusion/Boosting – can be used to weight results from multiple algorithms or multiple data sources.
- Help algorithm researchers focus on what needs “fixed”
- For “utility” qualities, task based evaluation is needed providing a “prediction”, so can use it for comparison of quality measures

Approaches

- Input filtering – determining failure before running the classifier:
 - Using image quality to predict failure of face recognition.
- PRAT: Post Recognition Analysis Techniques
 - One example: Failure Analysis from Similarity Surface Techniques (FASST)
Predicting Recognition System Failure

Recognized (as GW)

Face Recognition System

Similarity scores

Failure Prediction Engine

Rejected (not in DB)

Recognition Successful

Recognition Failed

Rejection Successful

Rejection Failed

Evaluating Failure Prediction

- Failure Prediction False Alarm Rate
 \[\text{FPFAR} = \frac{|\text{Case 3}|}{|\text{Case 3}| + |\text{Case 1}|} \]

- Failure Prediction Miss Detection Rate
 \[\text{FPMDR} = \frac{|\text{Case 2}|}{|\text{Case 2}| + |\text{Case 4}|} \]

<table>
<thead>
<tr>
<th>Conventional Explanation</th>
<th>Prediction</th>
<th>Ground Truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1 True Accept</td>
<td>Success</td>
<td>P</td>
</tr>
<tr>
<td>Case 2 False Accept</td>
<td>Success</td>
<td>O</td>
</tr>
<tr>
<td>Case 3 False Reject</td>
<td>Failure</td>
<td>O</td>
</tr>
<tr>
<td>Case 4 True Reject</td>
<td>Failure</td>
<td>P</td>
</tr>
</tbody>
</table>
FP ROC Compared to Quality-grouped ROC

FPFAR
Uses Full Data Sets
Vary “quality” threshold

FAR
Segmenting gallery on quality inflates the difference

Experimental FPROC vs CMC

IQ/SNR-based Failure Prediction

High SNR
Medium SNR
Low SNR

CMC for different IQ/SNR sub-groups

Recognition Rate

Constant HQ Gallery (1024), Group probes by IQ/SNR
12,000 photo-head probes
FPROC

✓ Allows more direct comparison of different quality measures, or a quality measure on different sensors/groups

± Requires an “evaluation gallery”
± Depends on underlying recognition system’s tuning and decision making processes

– May understate the “impact” of removing poor quality prints from process.

Quality-based Prediction is harder

Jpeg & Gamma

BLUR
Weighting on “eyes” region helps

But Probe/Gallery pose differences dominate
Add new few Features in Facial IQ based on Ada-boosted wavelets around eyes to “learn” features for eyes closes/glasses.
FIQ Conclusion

- Statistics of edge intensity distribution (blind image SNR estimate) are well correlated with recognition rates.
- For “good pose/lighting” images the IQ variations are fair predictor of recognition failure.
- Windowing and Weighting help as IQ becomes weak but pose and lighting are more significant.
- IQ not as good predictor when significant pose/lighting/contrast/compression variations are allowed.
- If doing “quality” should include pose/lighting estimates against “standard”

Image quality and rank

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>15</td>
<td>20</td>
<td>47</td>
</tr>
</tbody>
</table>

Apparent quality not always tied to rank.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>138</td>
<td>191</td>
</tr>
</tbody>
</table>

Gallery
PRAT: Post-Recognition Analysis Techniques

- Using data from actual recognition process, can Post Analysis predict failure?
- Many Recognition/Classification processes can be viewed using "similarity" scores.
- Failure Analysis from Similarity Surface Techniques. For details see
 - Li-Gao-Boult-05 IEEE Conf. Computational Intelligence for Homeland Security and Personal Safety, 2005
Similarity-based recognition
Failure Analysis from Similarity Surface Theory

- Similarity scores say how well target matches each DB entry.
- Used for all biometric Recognition problems
- Usually largest score is "match". But is it good enough?
- Overall shape say a lot about if it's a real match.

Similarity Score Examples

Sorted similarity scores
{\(s(x_i, y_1), s(x_i, y_2), \ldots, s(x_i, y_n)\)}
Simple “Slope”

\[D_\Sigma = \text{Height difference in similarity score } S_1 - S_p \]

Crude Slope estimate \(= D_\Sigma / p \)

- Sample size = 8,423 from Facet
- Face images from FERET

Separation of new Measures
Forms of FASST tested

- Hand-chosen threshold for “slope” features (common “normalization”?)
- Ada-Boost applied to designed features of sorted similarity data of top 10% (APRAT on slides)
- 3 layer Neural Net applied to top 10% similarity + number of “gallery duplication” count

ROC Plots — JPEG data

- Sample size = 121,308 × 4
- Three partitions
ROC Plots — Blur data

- Sample size = 4,064
- Only probe blurred

We find
- Blur kernel
 STD \Rightarrow performance

ROC Plots — Gamma data

- Sample size = 4,052

We find
- Gamma transform has little impact on prediction performance
APRAT vs PRAT (Gamma)

APRAT is good and automated!

PRAT Results with Different Values

- Gamma = 0.4
- Gamma = 0.8
- Gamma = 1.2
- Gamma = 1.6
- Gamma = 2.0

APRAT vs IQ-based prediction

APRAT (note vertical scale!)

IQ-based
APRAT on JPEG/Blur

FASST vs IQ Comparison: Blur

(Note vertical scale!)
ROC Plots – Photohead data

- Sample size = 21,353
- Cross-validation
- Real data (≈)

We find
- Predicting failure in weather more difficult
- EER (i.e. MD=FA) is ~12%

FASST and Image Quality

ROC of Failure prediction techniques on 12,000 images

- FASST
- FASST with Img Qual
- Img Qual Majority Fusion
- Img Qual Contrast
- Img Qual SNR
- Img Qual Blur
The Eyes Have it

- Recognition Rates unacceptable especially outdoor and at long distances.
- Riopka & Boul in ACM Biometric Workshop showed strong impact of Eye-location.

RandomEyes™

Predict when failure likely, and if so perturb location of features and choose best alternative.

Use a Neural Net to predict probable failure from top similarity scores.

Features for prediction:

- Eight Wavelet coefficients from a 4 point discrete Daubechies wavelet transform applied to top 8 sorted similarity scores.
- Each probe had 4 gallery images so we added two other features, number of matching IDs in top 8 and next highest rank of top ranked ID (=9 if none).

- See paper by Riopka-Boul in AVBPA 2005
Synthetic Data Results

RandomEyes™ helps Photoheads

- Predicting failure and trying perturbations can significantly improve recognition
Conclusions/Future Work

- IQ strongly correlated to Recognition rate but a weak per image predictor. Not a good predictor when pose/lighting/eye dominates recognition rates.
- FASST, using cumulative intra-cluster distance in high ranking similarity scores is an effective predictor. Two forms on different representations/techniques show its generality.
- FASST + Image quality not significantly better
- FASST + perturbations statistically significantly improve results
 - Can we apply FASST on a “test gallery” and make it useful during raw capture?
 - Can FASST be useful in factor analysis and experimental assessment?

Shameless plug

- Workshop on Privacy Research In Vision
- June 2005 (in conjunction with CVPR)
- Discussion oriented workshop but will have papers as well.
 - Papers due Mar 15