Improving Fingerprint Capture using "Auto Capture"

Greg Cannon
Greg Zyzdryn
March 2006
Overview for Auto Capture

• Motivation
• Overview
• Testing Process
• Testing Results
• Testing Issues
• Further Work
Market Motivation

- **Kiosks**
 - Environments where there are no operators
- **Untrained Operators**
 - New Employees
 - New Equipment
 - New Application Contexts
- **Busy Operators**
 - Multitasking Roles
 - Migration from Capture to Quality Control
Technical Motivation

• Objective Decision Framework
 – People are not consistent
 – People get tired
 – People get distracted

• User Selection Latency
 – Quality Decision Time (200-400 msec)
 Often slower than the image frame rate
 – Software User Interface Latency (200-300 msec)

• Best Image Frame Possibility
 – Auto capture allows the possibility to examine all the image frames, and select the “best” one

• Potential for adaptive cost function
 – Under significant load, the time may be more important than the quality
 – Under light load, the objective function can heavily emphasize the best quality
Description

- The Auto Capture process is composed of several sub processes…
Sample Capture

An imaging system takes a series of “photographs” at a given frame rate.

Depends on many factors:
- Sensor Electronics
- Capture Time
- Sensor Dynamic Range
- Image Resolution
- Platen Size
- Imaging Size
- Computer Interface
Rapid Segmentation

- Driven by flats capture requirements
- An image must be classified into background and friction ridge regions
- Friction ridge regions must be classified into fingerprint areas and “other” areas
Rapid Quality

- Fingerprint regions must be assessed
 - Size
 - Shape
 - “signal to noise”

- This must be done on a frame by frame basis for each fingerprint
- NFIQ is currently not feasible for rapid quality
 - Extraction Time
 - Quality Issues
Decision Model

- Stable Frame Quality
- Peaked Finger Quality
- Cost Function
- Cross Finger Quality
- Pinky/Ring Weighting
User Interface

- Frame Speed
- Indicator per Finger
- Display Placement
- Local Scanner Feedback

Sample Capture

Rapid Segmentation

Rapid Quality

Decision Process

User Interface
Raw Fingerprint Images

Notice the long right ring finger
Raw Fingerprint Images

A fairly typical left slap
A Typical Fingerprint Capture
Testing Process

• User Selection
 – Poor fingerprints remain poor, regardless of operator or auto capture…
 – Good fingerprints are easy to capture

• Data to Collect
 – NFIQ Quality Scores
 – Capture Times
 – Operator, Observer, Kiosk

• Data Collection Process
 – 1 user at a time (no ~training)
 – Caller
 – Recorder (6 finger scores, 1 time)
 – 27 Subjects
Testing Results

Type 14 Slap Capture

Seconds

OpTime
QaTime
Self Time
Testing Results
Issues

• Hand Detection (Rotation)
• Segmentation Issues
• Platen Material
 – Latents
 – Dry Prints
• Training
 – Tips, Full Fingers
 – Pressure
NFIQ Issues

• Fingerprint Tips (Tips of Tips)
 – They get very generous scores

• Granularity
 – Only 5 levels of granularity, and there was not many fingerprints below a 3.
The Tips....
Future Work

• More People
 – More Expert Operators
 – More Novice Operators
 – More Applicants
 • Good Fingerprint Quality
 • Medium Fingerprint Quality
 • Poor Fingerprint Quality

• Optimal parameters
 – Decision Block
 – Signal Processing Block

• Better Algorithms

• Better UI

• Suboptimal Equipment/Environment
 – Distracted Operators
 – Dirty Platens
Summary

• Auto Capture drastically improves capture speed
• Auto Capture can improve NFIQ quality scores for poor fingerprint placement issues (tips of tips)
• Auto Capture typically improves quality with “passive” operators
• NFIQ may not be the best tool to measure an auto capture process.
• Further work is needed