Preliminary Covariate Analysis
Results for a Fusion of Three FRVT 2006 Algorithms.

Dr. P. Jonathon Phillips
National Institute of Standards and Technology

Dr. J. Ross Beveridge
Dr. Geof H. Givens
Dr. Bruce Draper
Mr. Yui Man Lui
Colorado State University
November 2007
Overview

• **Scope of the Study**
 – FRVT 2006 Uncontrolled to Controlled Imagery.
 – Fusion of three top algorithms.

• **Approach**
 – Generalized Linear Mixed Effect (GLMM) Model.

• **Covariates**
 – Properties of subjects, environment and imagery.

• **Findings**
 – Scientifically significant effects and interactions.
Scope of the Study

• Uncontrolled Imagery matched to Controlled.

• 345 subjects and 110,514 match scores.
Scope of the Study - Covariates

• Performance Variable
 – Verification Outcome, Success of Failure.

• False Accept Rate - FAR

• Properties of Environment
 – Mugshot lighting, indoor uncontrolled, outdoor.

• Attributes of People
 – Gender, Race, Age.

• Measurable Properties of Imagery
 – Distance between Eyes.
 – Face Region In Focus Measure (FRIFM).
 • An edge-density measure by Eric Krotkov*

* “Active Computer Vision by Cooperative Focus and Stereo” by Eric Krotkov.
From Covariate to Quality Metric

• An actionable covariate
 – some degree of control
Factors Affecting Face Image Quality

<table>
<thead>
<tr>
<th>Character</th>
<th>Behavior</th>
<th>Imaging</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RICHNESS OF IDENTIFYING CHARACTERISTIC – BIOLOGICAL CHARACTERS</td>
<td>SPOOFING</td>
<td>ACQUISITION PROCESS AND CAPTURE DEVICE PROPERTIES</td>
<td>AMBIENT CONDITION</td>
</tr>
<tr>
<td>FACE</td>
<td></td>
<td></td>
<td>1. dynamic characteristics of the background like moving objects</td>
</tr>
<tr>
<td>1. anatomical characteristic (e.g. head dimensions, eye position)</td>
<td>1. closed eyes</td>
<td>1. image enhancement and data reduction process</td>
<td>2. variation in lighting and relate potential defects as</td>
</tr>
<tr>
<td>2. injuries and scars</td>
<td>2. (exaggerated) expression</td>
<td>2. physical properties (e.g. resolution and contrast)</td>
<td>• deviation from the symmetric lighting</td>
</tr>
<tr>
<td>3. ethnic group</td>
<td>3. hair across the eye</td>
<td>3. optical distortions</td>
<td>• uneven lighting on the face area</td>
</tr>
<tr>
<td>4. impairment</td>
<td>4. head pose</td>
<td>4. static properties of the background (e.g. wallpaper)</td>
<td>• extreme strong or weak illumination</td>
</tr>
<tr>
<td>5. Heavy facial wears, such as thick or dark glasses</td>
<td>5. makeup</td>
<td>5. camera characteristics • sensor resolution</td>
<td>3. subject posing, e.g.:</td>
</tr>
<tr>
<td></td>
<td>6. subject posing (frontal / non-frontal to camera)</td>
<td>6. scene characteristics • geometric distortion</td>
<td>• too far (face too small), or too near (face too big)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• out of focus (low sharpness)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• partial occlusion of the face</td>
</tr>
</tbody>
</table>

Face Image Characteristics

- 1. anatomical characteristic (e.g. head dimensions, eye position)
- 2. injuries and scars
- 3. ethnic group
- 4. impairment
- 5. Heavy facial wears, such as thick or dark glasses

Face Image Behaviors

- 1. closed eyes
- 2. (exaggerated) expression
- 3. hair across the eye
- 4. head pose
- 5. makeup
- 6. subject posing (frontal / non-frontal to camera)

Face Image Imaging

- 1. image enhancement and data reduction process
- 2. physical properties (e.g. resolution and contrast)
- 3. optical distortions
- 4. static properties of the background (e.g. wallpaper)
- 5. camera characteristics • sensor resolution
- 6. scene characteristics • geometric distortion

Face Image Environment

- 1. dynamic characteristics of the background like moving objects
- 2. variation in lighting and relate potential defects as
 - deviation from the symmetric lighting
 - uneven lighting on the face area
 - extreme strong or weak illumination
- 3. subject posing, e.g.: • too far (face too small), or too near (face too big) • out of focus (low sharpness) • partial occlusion of the face
Generalized Linear Mixed Model (GLMM)

Analysis is: *Mixed Effects Logistic Regression with Repeated Measures on People.*

- Let A and B be 2 covariates that might influence algorithm performance. For example, $A=$ gender (categorical) and $B=$ Query-Eye-Distance (continuous).
 - Let a index levels of A.
- Let j index the FAR setting, α_j.
- Y_{pabj} is
 - 1 if Person p is verified correctly, 0 otherwise.
- Y_{pabj} depends on:
 - person p, covariates A and B, and
 - false alarm rate α_j.
GLMM Model Continued …

\[Y_{pabj} \text{ is Bernoulli R.V. with success probability } p_{pabj} \]

\[
\log \left(\frac{p_{pabj}}{1 - p_{pabj}} \right) = \mu + \gamma_a + \gamma_b B + \gamma_j + \gamma_{aj} + \pi_p
\]

- \(\mu \): grand mean
- \(\gamma_a \): effect of setting \(a \) of factor \(A \)
- \(\gamma_b \): effect of covariate \(B \)
- \(\gamma_j \): effect of \(j \)
- \(\gamma_{aj} \): interaction effect between \(A \) and FAR
- \(\pi_p \): subject id. random effect (next page)
Subject Variation

The Mixed in Generalized Linear Mixed effect Model.

$$\begin{bmatrix} \pi_1, \ldots, \pi_n \end{bmatrix}^T \sim \text{Multivariate Normal where}$$

$$E(\pi_p) = 0, \quad \text{Var} \quad \pi_p = \sigma^2_\pi,$$

$$\text{Cor}(y_{pabj}, y_{p'a'b'j'}) = \begin{cases} \phi & \text{if } p = p' \\ 0 & \text{if } p \neq p' \end{cases}$$

This means:

The outcomes, i.e. verification success/failure, are uncorrelated when testing different people but correlated when testing the same person under different configurations.
Finding 1: False Accept Rate

dash = Outdoors
solid = Indoors
Finding 2: Gender

![Graph showing gender probability]

- Solid line = Indoors
- Dash line = Outdoors

Y-axis: Probability of Verification
X-axis: Gender (M to F)
Finding 3: Race

Probability of Verification

dash = Outdoors
solid = Indoors

Race

Asian (30k) Hispanic (3k) Unknown (5k) White (74k)
Finding 4: Glasses

- dash = Outdoors
- solid = Indoors

Probability of Verification

Query Glasses
(Target Never Wore Glasses)
Face Region In Focus Measure

FRIFM: Sum of Sobel edge magnitude inside an ellipse bounding the face.
Face Region In Focus Measure

Low FRIFM examples

High FRIFM examples
Finding 5: Distance Between Eyes, Query Image

Query Location

Outdoor

 Indoor

Small

Medium

Large

Query FRIFM

Target FRIFM

Probability of Verification
Finding 5: Distance Between Eyes, Query Image

Size of query image (distance between eyes)
Finding 5: Distance Between Eyes, Query Image

- Small
- Medium
- Large

Query environment

Query Location

Indoor

Outdoor

Query FRIFM

Target FRIFM

Probability of Verification

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Finding 5: Distance Between Eyes, Query Image

Boundary of observed data

Probability of Verification
Finding 5: Distance Between Eyes, Query Image

Indoor

Small

Medium

Large P

V

Range

~0.90 – ~0.10

Outdoor

Small

Medium

Large
Finding 5: Distance Between Eyes, Query Image

Low FRIFM good; even for one image
FRIFM Conclusion

• Large of performance.
 – Indoors [>0.95, ~0.70]
 – Outdoors [~0.90, ~0.10].

• Interaction between covariates
 – Environments (indoors, outdoors)
 – Query image size
 – Target and query FRIFM

• Low FRIFM good
 – Effect if control for only one image

• Outdoors: query size very important
Conclusion

• Quality is NOT in the eyes of the beholder
• It is in the performance numbers

• Model quantifies performance change.
 – Turn the knob.
 – Read off the change in performance.
 – Interaction between covariates

• Tells us where to put our efforts
 – Indoors it is FRIFM.
 – Outdoors it is Query Image Size.

• These models are used in other fields.
 – e.g., Biomedical.

• Biometrics should use these models.
Thank You